一般来说,都是如此,刚接触的人对于极限理论都是有抵触的,因为它不符合我们正常的逻辑。
“微积分在十七世纪的时候由牛顿和莱布尼茨分别创立,他们两个为这个争了一辈子,但都没有对无穷小做出完善的定义,因为质疑微积分的理论基础,也就是所谓的第二次数学危机,这场危机持续了150年之久。”
说起这个,8班的孩子们感兴趣了。
“那后来谁解决了啊?”
“牛顿不是物理学家吗?他还会数学?”
……
“牛顿数学很好,被誉为四大数学家之一。至于这个危机,不是一个人解决的,是数位数学家共同完善了这个定义,”温晓光耐心的回答:“拉格朗日最早使微积分严格化,他试图把整个微积分建立在泰勒公式的基础上;柯西将微积分建立在极限理论的基础上;维尔斯特拉斯逻辑地构造了实数论;黎曼证明被积函数不连续,其定积分也可能存在,将柯西积分改进为黎曼积分。”
同学们一脸懵逼,他说的没有一个字母,全是汉字,但真不理解,关键是那些个名字都没听过。
单纯的同学们现在还不明白,这些是你们这辈子都不会忘记的名字。
连路永华听了都下意识的摸了摸自己的头,呀,光秃秃的。
“温晓光,你继续呀,微积分到底是什么?”陈天又叫道。
温晓光奇怪,
“我说完了啊,”他把一个式子圈起来,“这就是微分,至于积分符号,大概类似一个倒下的s。至于理论概念大概就在第二次数学危机的故事里,都讲完了,你没听吗?”
陈天:“……”
麻蛋!你画两个稀奇古怪的符号就跟我说讲完了?
路永华都不看他,出声道:“微分和积分基本概念第一次听起来都不好理解,你借助最后那道题目讲一下运用吧。”
“嗯,其实虽说高中不学微积分,但是不论是物理还是数学,一些难题实际上运用微积分是比较好学的,如果大家想在这上面拿分数,可以尝试一下使用这种思想和方法,非常管用。”
“如果实在不愿意……那也没关系”温晓光笑了一下,“反正到了大学也跑不掉。”
8班同学心里默念一句妈卖批。那我还是不要考大学好了呀!
五分钟时间稍微说了些数学的趣事,接下来回到题目本身就没那么好玩儿呢,但路永华发现,因为是温晓光讲题,好多女孩子不管听没听懂,笔记记得是贼认真。
而且因为他抽出空在后边儿站着,那些个学生也老实许多了。
妈呀,这效果不错呀!
上次他讲试卷自己坐在前面都没想到还有这种意外收获!
关键是温晓光确实讲的不错,深入浅出,简单易懂,对于数学知识点和理论应用的是游刃有余。
下课的时候,因为这份试卷比较难,所以没讲完,他还叮嘱温晓光:“剩下的内容做些准备,下次还你讲吧。”
“好。”
好什么好!
路永华是乐疯了,
但坐在后面的同学真疯了,
戴唯毅开着玩笑,“温晓光!就是因为你,我们上数学课贼难受!所有人听我号令,给我捶他!”
一下子起来七八个平时老在一起开玩笑的人,
“温晓光,你别跑!”
不跑?
不跑劳资是傻子吧!