当前位置:笔屋小说网>为了能减刑,我带兔子飞上天> 第1019章 赢了?(1/2)
阅读设置 (推荐配合 快捷键[F11] 进入全屏沉浸式阅读)

设置 X

第1019章 赢了?(1/2)

章节不对?章节无内容?换源看看: 81中文网
  最新网址:xs【红桃K挑战项目--芝诺的乌龟】

  【挑战限时:无限!】

  【时间比例:1:31,536,000?】

  【挑战背景介绍:公元前5世纪,希腊数学家、哲学家芝诺先生提出一个有趣的理论,他说如果让一只行动缓慢的乌龟和英雄阿喀琉斯进行长跑比赛。在比赛没有终点的情况下,乌龟站在阿喀琉斯前方100米处起跑,阿喀琉斯永远无法追上乌龟……】

  【挑战方式:所有参加挑战的选手化身为英雄阿喀琉斯的分身之一,在挑战开始后,进入不同的空间维度进行不同的比赛,以超过芝诺的乌龟为最终获胜条件。】

  【挑战规则1:芝诺的乌龟领先100米起跑后,挑战者方能开始追赶。】

  【挑战规则2:如挑战者中途因故停止追赶,比赛自动终止,选手丧失挑战资格。】

  【挑战规则3:本场挑战时间无限,若挑战者永远无法追上芝诺的乌龟,则永远无法获得挑战胜利。】

  【挑战规则4:挑战者在本场挑战中,理论上拥有无限体力,芝诺的乌龟同样永不停歇。】

  【挑战规则5:……】

  【……】

  一大长串的挑战规则,让王陆翔等人听的目瞪口呆。

  什么玩意儿?

  红桃K挑战卡牌,竟然是流传千古的著名悖论……

  芝诺的乌龟?

  不愧是噩梦难度的挑战,不愧是小丑卡牌后的最后四关!

  众人心中凛然,听完规则后竟完全没有通关的思路。

  毕竟,谁不知道。

  假设空间可以进行不断分割的话,芝诺饲养的这头乌龟就拥有缩地成寸的神通。

  虽然在没上过学的小孩子看来,追上芝诺的乌龟不过是必然会发生的事。

  因为只要双方的速度不一致,计算每秒行进的米数,几秒后就能超越乌龟。

  但在严谨的物理学中却不是这样。

  我们必须证明,如何才能追上芝诺的乌龟,以及乌龟不断前行和我们造成的空间差距问题。

  如果这样不好理解的话,龙国两千年前,一本书里同样提到这个悖论。

  《庄子·天下篇》说:“一尺之棰,日取其半,万世不竭!”

  什么意思?

  就是说一尺长度的木棍,每天截取其中一段,永远无法全部取完。

  是不是这样说,就好理解的多。

  你多长时间才能取完这根木棍。

  它和芝诺的乌龟悖论一样,只不过换成了人和乌龟的跑步比赛。

  想要证明人可以跑赢乌龟,和证明每天取一半的木棍,最终如何取完的方式相同。

  再换句话说。

  所有人都知道1 1=?这种简单问题的答案。

  它等于2!

  但如何证明为什么1 1=2,会难倒绝大多数的普通人。

  而芝诺的乌龟这个悖论,已足足困扰人类两千多年。

  直到微积分和普朗克常数的出现,它才被物理学和数学家彻底攻克。

  微积分的极限理论和普朗克常数中对量子世界的解释告诉人们。

  只要不断奔跑下去,在某个空间和时间的节点之内,芝诺乌龟和阿喀琉斯会处于同一起点,再往前奔跑就会超过乌龟。

  但,说一千道一万。
本章节尚未完结,共2页当前第1页,请点击下一页继续阅读------>>>

上一章 目录 我的书架 下一页